Aligned multiwalled carbon nanotube membranes.

نویسندگان

  • Bruce J Hinds
  • Nitin Chopra
  • Terry Rantell
  • Rodney Andrews
  • Vasilis Gavalas
  • Leonidas G Bachas
چکیده

An array of aligned carbon nanotubes (CNTs) was incorporated across a polymer film to form a well-ordered nanoporous membrane structure. This membrane structure was confirmed by electron microscopy, anisotropic electrical conductivity, gas flow, and ionic transport studies. The measured nitrogen permeance was consistent with the flux calculated by Knudsen diffusion through nanometer-scale tubes of the observed microstructure. Data on Ru(NH3)6(3+) transport across the membrane in aqueous solution also indicated transport through aligned CNT cores of the observed microstructure. The lengths of the nanotubes within the polymer film were reduced by selective electrochemical oxidation, allowing for tunable pore lengths. Oxidative trimming processes resulted in carboxylate end groups that were readily functionalized at the entrance to each CNT inner core. Membranes with CNT tips that were functionalized with biotin showed a reduction in Ru(NH3)6(3+) flux by a factor of 15 when bound with streptavidin, thereby demonstrating the ability to gate molecular transport through CNT cores for potential applications in chemical separations and sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes.

Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensa...

متن کامل

Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes.

We demonstrate here that water can be efficiently wet and pumped through superhydrophobic aligned multiwalled nanotube membranes by application of a small positive dc bias. At a critical bias ( approximately 1.7 V), with the membrane acting as anode, there is an abrupt transition from a superhydrophobic to hydrophilic state. Interestingly, this phenomenon is strongly polarity dependent; for a n...

متن کامل

Suspended multiwalled carbon nanotubes as self-aligned evaporation masks.

We describe the nanofabrication study of self-aligned electrodes on suspended multiwalled carbon nanotube structures. When metal is deposited on a suspended multiwalled carbon nanotube structure, the nanotube acts as an evaporation mask, resulting in the formation of discontinuous electrodes. The metal deposits on the nanotubes are removed with lift-off. Using Al sacrificial layers, it was poss...

متن کامل

An Overview of Fabrication Methods and Applications of Carbon Nanotube Membrane in Environmental Engineering as Hydraulic Microstructures

The main purpose of this article is to study fabrication methods and applications of aligned carbon nanotube (CNT) membranes as a hydraulic microstructure in treatment processes. This paper emphasizes the use of CNTs as membrane in separation processes like water and wastewater treatment because of their exclusive advantages. Their most important characteristics are high mechanical strength aga...

متن کامل

Ionic Rectification through the Formation of Complexes or Precipitation in Carbon Nanotube Membranes

Carbon nanotube membranes were fabricated using arrays of millimeter-long multiwalled carbon nanotubes (MWCNTs) with an inner diameter of about 8 nm through a low-cost cast­polishing method. The fabricated carbon nanotube membranes demonstrated a unique ionic rectification phenomenon through two fundamentally different mechanisms: a) the formation ofmetal ion complexes and b) the precipitation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 303 5654  شماره 

صفحات  -

تاریخ انتشار 2004